3D phase-resolved wave modelling with a non-hydrostatic ocean circulation model

SIROCCO developers derived a phase-resolved wave model from an ocean circulation model SYMPHONIE for the purpose of studying wave-current effects in nearshore zones. One challenge is to adapt the circulation model to the specificities of wave physics. This mainly concerns the consideration of non-hydrostatic effects and the parametrization of wave breaking. The non-hydrostatic pressure is calculated using the artificial compressibility method (ACM). The ACM-induced errors on wave dispersion properties are examined in detail in the context of the linear theory using idealized test cases. The possible compromise between the precision achieved on non-hydrostatic physics and the adjustable CPU cost of the ACM method is looked at in detail. The modification of the wave characteristics by the bathymetric slope and the breaking of waves are then examined from a linear slope beach laboratory experiment. Finally the model is evaluated on the issue of rip currents and their feedback on the wave field using a laboratory experiment of a beach with a bar intersected by channels.

Reference: Marsaleix et al 2019, https://doi.org/10.1016/j.ocemod.2019.02.002

More news


Dynamics of the North Balearic Front

Dynamics of the North Balearic Front during an autumn tramontane and mistral storm: air–sea coupling processes and stratification budget diagnostic  The North Balearic Front forms the southern branch of the cyclonic gyre in the northwestern Mediterranean Sea. Its dynamics exhibit significant seasonal variability. During autumn, the front spreads northward during the calm wind periods and […]


Modeling the impact of thin scales on the circulation in the Mediterranean

The group SIROCCO LA was one of the winners of the “mesochallenge” launched by the mesocentre CALMIP to test the new supercomputer OLYMPE (1,365 Petaflop / s, 13464 cores of calculations, 76 TB of memory). The challenge was to use a significant portion (up to 12960 calculation cores) of the OLYMPE computing system to deal […]